Iteration-Complexity of a Linearized Proximal Multiblock ADMM Class for Linearly Constrained Nonconvex Optimization Problems
نویسنده
چکیده
This paper analyzes the iteration-complexity of a class of linearized proximal multiblock alternating direction method of multipliers (ADMM) for solving linearly constrained nonconvex optimization problems. The subproblems of the linearized ADMM are obtained by partially or fully linearizing the augmented Lagrangian with respect to the corresponding minimizing block variable. The derived complexity bounds do not depend on the specific forms of the actual linearizations but only on some Lipschitz constants which quantify the approximation errors. Iteration-complexity is then established by showing that the linearized ADMM class is a subclass of a general non-Euclidean ADMM for which a general iteration-complexity analysis is also obtained. Both ADMM classes allow the choice of a relaxation parameter in the interval (0, 2) as opposed to being equal to one as in many of the previous papers on this topic. 2000 Mathematics Subject Classification: 47J22, 49M27, 90C25, 90C26, 90C30, 90C60, 65K10.
منابع مشابه
Inertial Proximal ADMM for Linearly Constrained Separable Convex Optimization
The alternating direction method of multipliers (ADMM) is a popular and efficient first-order method that has recently found numerous applications, and the proximal ADMM is an important variant of it. The main contributions of this paper are the proposition and the analysis of a class of inertial proximal ADMMs, which unify the basic ideas of the inertial proximal point method and the proximal ...
متن کاملIteration-complexity of a Jacobi-type non-Euclidean ADMM for multi-block linearly constrained nonconvex programs
This paper establishes the iteration-complexity of a Jacobi-type non-Euclidean proximal alternating direction method of multipliers (ADMM) for solving multi-block linearly constrained nonconvex programs. The subproblems of this ADMM variant can be solved in parallel and hence the method has great potential to solve large scale multi-block linearly constrained nonconvex programs. Moreover, our a...
متن کاملConvergence rate bounds for a proximal ADMM with over-relaxation stepsize parameter for solving nonconvex linearly constrained problems
This paper establishes convergence rate bounds for a variant of the proximal alternating direction method of multipliers (ADMM) for solving nonconvex linearly constrained optimization problems. The variant of the proximal ADMM allows the inclusion of an over-relaxation stepsize parameter belonging to the interval (0, 2). To the best of our knowledge, all related papers in the literature only co...
متن کاملSymmetric ADMM with Positive-Indefinite Proximal Regularization for Linearly Constrained Convex Optimization
The proximal ADMM which adds proximal regularizations to ADMM’s subproblems is a popular and useful method for linearly constrained separable convex problems, especially its linearized case. A well-known requirement on guaranteeing the convergence of the method in the literature is that the proximal regularization must be positive semidefinite. Recently it was shown by He et al. (Optimization O...
متن کاملLinearized Alternating Direction Method of Multipliers for Constrained Nonconvex Regularized Optimization
In this paper, we consider a wide class of constrained nonconvex regularized minimization problems, where the constraints are linearly constraints. It was reported in the literature that nonconvex regularization usually yields a solution with more desirable sparse structural properties beyond convex ones. However, it is not easy to obtain the proximal mapping associated with nonconvex regulariz...
متن کامل